Runs either a linear regression, logistic regression, or multinomial classification. The model is automatically determined based off the nature of the target variable.

tidy_glm(data, formula)

Arguments

data

dataframe

formula

formula

Value

glm model

Examples


# linear regression
iris %>%
tidy_glm(
tidy_formula(., target = Petal.Width)) -> glm1

glm1
#> 
#> Call:  stats::glm(formula = formula, family = glm_family, data = data)
#> 
#> Coefficients:
#>       (Intercept)       Sepal.Length        Sepal.Width       Petal.Length  
#>          -0.47314           -0.09293            0.24220            0.24220  
#> Speciesversicolor   Speciesvirginica  
#>           0.64811            1.04637  
#> 
#> Degrees of Freedom: 149 Total (i.e. Null);  144 Residual
#> Null Deviance:	    86.57 
#> Residual Deviance: 3.998 	AIC: -104.1

glm1 %>%
visualize_model()


# multinomial classification

tidy_formula(iris, target = Species) -> species_form

iris %>%
tidy_glm(species_form) -> glm2


glm2 %>%
visualize_model()


#  logistic regression
iris %>%
dplyr::filter(Species != "setosa") %>%
tidy_glm(species_form) -> glm3

suppressWarnings({
glm3 %>%
visualize_model()})